Uniformity in Fractional Factorials
نویسنده
چکیده
منابع مشابه
Connection Between Uniformity and Aberration in Regular Fractions of Two-level Factorials
We show a link between two apparently unrelated areas, namely uniformity and minimum aberration, both of which have been of substantial recent interest. Speciically, with reference to regular fractions of two-level factorials, we derive an expression for the centered L 2-discrepancy measure for uniformity in terms of the wordlength pattern. This result indicates, in particular, an excellent beh...
متن کاملIntegral representations for the Dirichlet L-functions and their expansions in Meixner-Pollaczek polynomials and rising factorials
In this article we provide integral representations for the Dirichlet beta and Riemann zeta functions, which are obtained by combining Mellin transform with the fractional Fourier transform. As an application of these integral formulas we derive tractable expansions of these L-functions in the series of Meixner-Pollaczek polynomials and rising factorials.
متن کاملOptimal Fractional Factorial Plans for Asymmetric Factorials
Fractional factorial plans for asymmetric factorial experiments are obtained. These are shown to be universally optimal within the class of all plans involving the same number of runs under a model that includes the mean, all main effects and a specified set of two-factor interactions. Finite projective geometry is used to obtain such plans for experiments wherein the number of levels of each o...
متن کاملFactorials of real negative and imaginary numbers - A new perspective
Presently, factorials of real negative numbers and imaginary numbers, except for zero and negative integers are interpolated using the Euler's gamma function. In the present paper, the concept of factorials has been generalised as applicable to real and imaginary numbers, and multifactorials. New functions based on Euler's factorial function have been proposed for the factorials of real negativ...
متن کاملFractional Factorial Split-Plot Designs with Minimum Aberration and Maximum Estimation Capacity
Considering general prime or prime powered factorials, we give a nite projective geometric formulation for regular fractional factorial split-plot designs. This provides a uniied framework for such designs and facilitates their systematic study under the criteria of minimum aberration and minimum secondary aberration; the latter criterion is introduced to achieve ner discrimination. We investig...
متن کامل